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Because the field of statistics has become so important in medicine, it is
well worth a physician's time to become acquainted with the language of
statistics, the elementary concepts, and a few of the more commonly used
procedures . For this purpose, we are presenting these essentials in a series
of 12 short, nontechnical papers . Obviously, what can be accomplished in
the brief space allotted each of them is limited . However, the reader call
expect to gain an understanding of what statistics is, an ability to under-
stand the statistical aspects of much of the medical literature, a feel for
when it will be necessary to consult with a statistician, and---for those
occasions--an ability to communicate effectively with him .

Unfortunately, such all elementary acquaintance as we offer may lead a
reader to overestimate his statistical capabilities and fail to consult a
statistician in undertaking a research effort . We do not believe that this
series of papers, or any review of statistics at the introductory level, will
enable anyone to proceed without professional assistance in medical
research requiring statistical expertise .

ORGANIZATION AND CONTENTS
Medical research studies may be classified into two broad categories .
Descriptive studies are intended to describe the characteristics of only the
study group, using observations obtained from every member of the grout) .
Inferential studies, on the other hand, are designed to enable the investiga-
tor to use observations from selected individuals (a sample) to snake
conclusions about the larger group (population) from which they were
drawn .
Our first three papers deal with descriptive studies, focusing on sum-

mary statistics (such as the mean and median) and graphic techniques
(such as histograms and scatter diagrams) . In paper 4, we describe how
one may estimate characteristics ofthe population from characteristics of a
small number of its members randomly selected . These principles are then
applied in papers S through 8 to the problem of testing hypotheses about
the population by use of sorne of the more common testing procedures .

Papers 9 through 12 discuss other common topics in medical research .
Included are some problems that arise in analyzing survival data (where
one must be careful to account for [lie fact that not all persons in the study
were observed until death and some may have been followed up longer
than others), determining normal values, evaluating a new medical proce-
dure, and applying sequential statistical methods (which enable the inves-
tigator to test hypotheses while the study is in progress, with a view toward
terminating the study early) .

As we have indicated, our purpose is to offer an acquaintance with these
topics for only a small investment of the reader's time . Throughout, the
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discussion will be kept at an elementary level, omitting
all mathematical derivations and, as much as possible,
mathematical formulas . It is our hope that, upon comple-
tion of this series, the reader will be encouraged to go on
to a further study of statistics . Many excellent elementary
textbooks are available .
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1 . Descriptive Statistics

Statistics is the mathematical technique or process of gathering, describ-
ing, organizing, analyzing, and interpreting numerical data . The study of
statistics can be divided into two parts : descriptive and inferential . De-
scriptive statistics involves the numerical description of a particular group,
whereas inferential statistics involves the process of taking a sample and
making inferences about the population from which the sample was taken .
In this first paper we will consider some elementary descriptive statistics .

TYPICAL VALUES
The two most important statistics for measuring typical values (that is, the
location of the center of a set of data) are the mean and the median .
Mean.--The mean is computed by summing the individual data points,

[lien dividing this sum by the number of observations (n) in the data set . We
illustrate with the following hypothetical data :

- 2, 0, 2, 4, ti (n = 5) .

The mean is - 2+0+2+4+ 6 =10=2 .

Median.--If n is odd, the median is defined as the middle value : half the
other observations are equal to it or smaller and half are equal to it or
larger . For the data set (- 2, 0, 2, 4, 6), the median is 2 . If n is even, one
takes (lie midpoint between the two inner values : the median of (1, 5, 6, 7)
is 5 .5 ; and the median of (4, 10, 18, 36) is 14 .

VARIABILITY
Regardless of which method (mean or median) has been used to locate the
center of the data, the question of variability arises . Specifically, one is
interested in the range of values that occur most commonly and how
closely individual values tend to cluster around the center .
A useful method is to determine the 25th percentile (P2s ) and the 75th

percentile (P75 ) . Of all [lie values under consideration, 25% lie below P2s
and 75% lie below P75 . The interquartile range (also called the semiquar-
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rig . 1-1 . Six data sets with sarne mean (x = 4) and same standard
deviation (s = 2 .83) . (From Elveback LR : A discussion of some estima-
lion problems encountered in establishing normal values . In Clinically
Oriented Documentation of Laboratory Data . Edited by ER Gabriel!,
New York, Academic Press, 1972, pp 117-137. By permission .)

tile range) extends from the value at P25 to the value at
P75 , and this range includes 50% of the data points . In
some instances, an investigator may find other percen-
tiles more appropriate .

In very small data sets, an informative statement re-
garding variability is given by the range-the smallest
value and the largest . However, a disadvantage of the
range is that it depends heavily on the size of n : as more
observations are included (as n becomes larger), the
range usually gets larger (though it may remain un-
changed) . The range also may be greatly influenced by
outliers, as will be illustrated below.

Another statistic that is commonly used to describe the
variability in a set of data is the standard deviation . This
usage of the standard deviation appears to derive largely
from the mistaken belief that 95% of the observations can
be expected to lie within two standard deviations from
the mean . The falsity of this proposition is easily demon-
strated, for it is true only under special, infrequently
occurring conditions . Thus the appropriateness of the

Mayo Clin Proc, Ian 1981, Vd

standard deviation for descriptive purposes is some%+
limited . However, it is useful in other contexts (relatin
the sample mean) which will be discussed in later pap
The computations required for calculating the stand
deviation are illustrated below .

Stet) 1 . Square the deviation of each individual va
from the mean .

Step 2 . Sum the squared deviations .
Step 3 . Divide the sum by n - 1 . The result is called

variance (5 2) .

Step 4 . Obtain the standard deviation (s) by taking!
square root of the variance

Example

52 =

	

sure of squared deviations = 40 = 10

Step 4 . s =

	

1

	

= 3.16.

OUTLIERS AND SKEWNESS
Although the mean and standard deviation are the m
commonly used statistics for describing typical vale
and variability exhibited by a set of data, they are
appropriate when outliers or skewness is present .
example, seven measurements of serum glutamic
alacetic transaminase in the same subject produced
values 8, 9, 9, 9, 10, 10, 20 units/ml . The value of
clearly dissimilar to the other six observations, is tern
an "outlier." When it is included, the mean is 1(
which is larger than six of the seven data points .'
standard deviation, 4 .2, is more than twice the rang
the remaining six points when the outlier is omid
Clearly, in this instance, the mean and standard deviai
do not provide an accurate description of the set of d,
In this case, the data would be described more accura
by a statement that the median value is 9, six values ra
from 8 to 10, and one value is 20 .

As an example of skewness, consider seven measi
ments of serum triglycerides : 90, 93, 97, 103, 111,1
153 mg/dl . The mean and standard deviation are 11
and 22 .4, respectively . Note that the span from sma)

Step 1 .
Original Deviation from
data mean of + 2
-2 4

Deviations
squared

16
0 2 4

+2 0 0
+4 2 4
+6 4 16

Step 2 . Sum of squared deviations = 40
Step 3 . (n = 5)
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glue to median is only 13 units, 90 to 103, while the
Nn from median to largest value is 50 units, 103 to 153 .
Mien the values are arranged in order of increasing size
pd those greater than the median are more spread out
sin those less than the median, we say the data are
tewed to the right . This is a common occurrence, partic-
luly with data that cannot be negative, such as the usual
horalory measurements . Less frequently, one encoun-
rsdata that are skewed to the left .) Again the meats and
Pndard deviation fail to represent accurately the typical
lluesanddispersion . The median (103) and range (9t) to
53) would convey this information better .
Generally, when data are highly skewed or when out-

tYs are present, the center is more meaningfully mea-
wed by the median . Variability usually is best described
yquoting appropriate percentiles or the range (or both),
nd this is especially appropriate when outliers or skew-
css is present . Ultimately, of course, the summary de-
Iriptive statistics discussed above remain a summary.
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Considerably more information may be conveyed by
graphic displays .

Limitations of the mean and the standard deviation are
illustrates) by Figure 1-1, 1 which shows the manner in
which individual values of six hypothetical data sets are
distributed about the mean . (For example, notice that in
the distribution at the top of Figure 1-1 most of the values
are less than the mean, with the data skewed to the right .)
Although the data sets depicted are very different, all six
have the same mean (x = 4) and same standard deviation
(s = 2 .13 :.3) . A further discussion of graphic displays,
which are especially useful in describing large data sets,
will be the subject of our next paper.

REFERENCE
1 .

	

Elvelrac k LR : A discussion of some estimation problems encoun-
tered in establishing normal values . (n Clinically Oriented Docu-
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2. Graphic Displays-Histograms,
Frequency Polygons, and Cumulative
Distribution Polygons

This is the second in a series of papers dealing with the use of statistics in
medicine . The previous paper discussed the use of summary statistics that
describe a set of data by indicating their center (mean or median) and their
variation from it (the standard deviation, range, or interquartile range).
Also considered were the limitations of these statistics in describing the
distribution of a data set . An illustration showed six very different distribu-
tions that all had the same mean (center) and standard deviation (variabil-
ity) . In this paper, graphic displays demonstrating the distribution of large
data sets involving continuous variables will be considered .

lfisfogranls.-A very useful graph for this purpose is the histogram, in
which frequency is represented by area . For example, Figure 2-1 shows
the distribution of serum triglyceride values from 96 6-year-old boys . It can
be seen that there: are more values in the interval from 41 through 50 ntg/dl
than in any other interval, and that most of the values are less than 71 mg/dl
(the area to the left of 71 rng/dl is most of the total area) . To provide an
understanding of histograms, we will work through the steps that produced
Figure 2-1 .

I lie first step is to list the observations in order of size, indicating the
frequency with which each observation occurs (Table 2-1) . One then
forms class intervals, grouping the data according to intervals of interest or
in such a way as to ensure that each interval contains at least some minimal
number of observations . On occasion, one may wish to use unequal class
intervals . For example, in describing the age distribution of a group of
subjects in which mortality is of interest, the first year of life may be of
special interest ; if so, class intervals 0-1, 2-9, 10-19, 20-29, and so forth
may be desirable . 1o illustrate the technique for this expedient in the
example involving the triglyceride values, unequal class intervals (col-
umns A and 13 of Table 2-1) have been chosen, which will cause the
columns in the histogram to be of unequal width .

In column C of Table 2-1 are the frequencies, or the number of observa-
lions that fall within each interval (in the example, the numbers of subjects
whose triglyceride values fall within each interval) . If all of the intervals
were of equal size, these frequencies would suffice to determine the
relative heights of the bars to be plotted in the histogram . Since the widths
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Histogram of triglyceride values from 96 6-year-old boys
corresponding to data in Table 2-1 . Abscissa (x-axis) has unequal
intervals corresponding to column B in Table 2-1 . Ordinate (y-axis) has
values corresponding to column D in Table 2-1 .
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Histograms of P04 levels in 329 females, plotted with inter-
val widths of 0.1, 0.3, 0 .5, and 1 .0 mgldl .
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Fig . 2-3 .

	

Frequency polygons representing serum triglyceride values .
Frequencies are expressed as percentage frequencies . A, Data from 96
boys (from fig. 1-1 and Table 2- 1) . B, Data from 96 boys and 64 girls .

Table 2-I .-Distribution of Serum Triglyceride Concentrations in 96 Boys 6 Years old

of the intervals are unequal and the frequency is to be
represented by area (width x height), one must solve :
frequency = width x height . Thus,

height = frequency = frequency per unit of mea-

surement (frequency per 1 mg/dl of triglyceride) .

Triglycerides,
mg/dl serum

(A)

Width of
interval

(B)

21-30 10
31-40 10
41-50 10
51-60 10
61-70 10
71-90 20
91-130 40
226 1

Frequency
(C)

Frequency
+ width

(D)

Cumulative
of subjects

(E)

11 1 .1 11 .4
15 1 .5 27.0
24 2 .4 52.0
18 1 .8 70.8
12 1 .2 83.3
9 0.45 92 .7
6 0.15 99.0
1 1 .0 100.0
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Except in the case of very large data sets, one must
consider the problem of choosing interval widths, keep-
ing in mind the twin objectives of accurate detail and
reliable overall description of the distribution . These con-
siderations are illustrated in Figure 2-2 . Apparently,
many of the peaks that are seen with use of 0.1 as the
interval width are artifacts-notice that they disappear
when an interval width of 0.3 is used . Conversely, with
intervals of 1 .0 virtually all detail is lost . However, no
recommendation will be made for choosing between the ,

two histograms in the middle (class intervals of 0.3 or 0.5)
other than to point out that-as will often be the case-
the informed judgment of the investigator will likely serve
better than any rule of thumb .
Whatever class intervals are chosen, whether of equal

or unequal width, the horizontal axis should be marked
at regular intervals (like a ruler), as in Figure 2-1 . The
vertical axis should start at 0 and also be marked at
regular intervals, and should not be broken .
Frequency Polygons.-Frequency polygons provide a

useful method for comparing two data sets on the same
graph . (If the sets are not of the same size, their distribu-
tions first are made proportional, usually by conversion
to a percentage basis .) To draw a frequency polygon, one
simply connects the midpoints of the tops of successive
bars of the histogram (made with percentage frequen-
cies), as shown in Figure 2-3 A . A frequency polygon
comparison of triglyceride values from the 96 6-year-old
boys in our previous example with the corresponding
values from 64 6-year-old girls is shown in Figure 2-3 8 .
Cumulative Distribution Polygons.-Another very
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Cumulative distribution polygon of triglyceride values from
96 boys (from column f in Table 2-1) .

useful method for displaying the distribution of a data set
is provided by the cumulative distribution polygon (Fig .
2-4), which shows the percentage of observations less
than any given value . Any desired percentile can be
obtained from it as well . For example, Figure 2-4 indi-
cates that among the set of 96 triglyceride observations in
our familiar example, 80 mgldl corresponds to the 88th
percentile (88% of the observations were less than 80).
The graph is constructed by connecting consecutive

points from the cumulative distribution (column E of
Table 2-1) with straight-line segments . Cumulative fre-
quency polygons can be plotted together, just as frequen-
cy polygons can; and this provides another way to com-
pare sets of data .
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3 . Graphic Displays--
Scatter Diagrams

Technical terms 'and symbols introduced
Scatter diagram
Transformation

This is the third of a series of papers dealing with statistics used in medical
research . The first discussed descriptive statistics that are useful in provid-
ing summary information about a set of data . This paper is a continuation
of the second, which introduced some graphic displays for presenting data
on a single continuous variable, such as serum triglyceride concentration .
However, we now consider graphing the relationship between two con-
tinuous variables-for example, between age and serum IgE concentra-
tion .
The appropriate graph is a scatter diagram (Fig . 3-1) . Each point in the

scatter diagram is determined by two values . In our example, each patient
will be represented by a single point whose location is determined by his
age (on the horizontal scale) and his IgE value (on the vertical scale) .
The first step in preparing a scatter diagram is to determine the range for

each variable, so that the axes may be properly labeled . The graph should
be approximately square, with no values plotted on the axes themselves .
For a scatter diagram-unlike the graphs described in paper 2-it is not
necessary to start either axis at 0 .
A scatter diagram should be one of the first steps in data analysis . Data

features that otherwise might go undetected may become obvious on the
scatter diagram .

For example, in Figure 3-1 it is apparent that one subject (arrow) is
considerably older than the others in the group. Also, there are more
patients with IgE values below the mean value (286 ng/ml) than above it.
With the use of the terminology introduced in paper 1, it can be said that
the age of 70 years is an outlier and the data on IgE are skewed . As
explained in that paper, these are important elements to consider in
selecting appropriate descriptive statistics . For the present data, medians
and ranges would be preferable to means and standard deviations .

This example illustrates a general rule that should always be kept 10
mind when displaying data graphically : The purpose of a graph is Id
convey a quick visual impression . Figure 3-1 accomplishes this by expos.
ing the presence of outliers and skewness . However, it would be in-
appropriate to expect the reader to determine individual IgE measurements
from such a graph, as that information could be obtained more conve.
niently from a table .

In paper 2 of this series we showed how two large data sets may be
compared by use of frequency polygons . With smaller data sets, individual
points may be plotted in a scatter diagram. For example, IgE values iii
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Scatter diagram showing data (fictitious) relating IgE value
with age .

males and females are compared in Figure 3-2 A .
When data are strongly skewed, as the data on Figure

3-2 A are, the display sometimes can be made more
convenient by a suitable transformation, such as taking
logarithms of the original measurements (Fig . 3-2 8) . The
same transformation may be accomplished simply by
plotting the original values on semilog paper . Although
the logarithmic transformation probably is the kind rnost
commonly used, it is by no means the only one to be
considered . Another transformation that is useful (espe-
cially when logarithms overcorrect, producing skewness
in the opposite direction) is taking the square root of the
variable .

If the transformation is successful in eliminating skew-
ness, conceivably one could compute descriptive statis-
tics (means and standard deviations) from the trans-
formed data . Although this may be useful in some ap-
plications, it usually produces less satisfying results than
would be obtained by choosing a more appropriate de-
scriptive statistic that preserves the original unit of
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fig . 3-2 . IgE values by sex . A, Original measurements . t3, Logarithms
of measurements .

measurement . Generally, transformations are more use-
ful in inferential than in descriptive statistics . The distinc-
tion between descriptive and inferential statistics will be
the subject of the next paper .
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4. Estimation From Samples

In the three preceding papers, we discussed statistical techniques for
describing a set of data-descriptive statistics . Here we shall begin to
consider inferential statistics : how to deal with problems wherein it is nd
practical to obtain and manipulate observations on every member of the
population of interest . Our approach is to study a sample from the
population . (Indeed, it is a convention of inferential statistics that "popula
tion" means a group--not necessarily of persons-which is studied ht
sampling .) To the extent that the sample group is representative of the
population from which it is taken, inferences properly drawn from the
sample will apply to the population .

DESCRIPTION OF POPULATION CHARACTERISTICS
Statisticians often refer to a population characteristic as a variable ; fat
example, height, weight, and serum cholesterol would all be considered
variables . The distribution of the values of a variable in the populationcan
be represented by a sample histogram constructed with measurement
from a sample group . Similarly, the sample mean and standard deviation$
and s) may be used to estimate the population mean and standard de4
ation (w and cr) . Statisticians refer to statistics such as 3c'and s as randod
variables, since they vary randomly in repeated samples from the sarro
population . The corresponding mean and standard deviation of IN
population-which are constants-are referred to as parameters . In distih
guishing population parameters from their sample estimates, Gred
symbols are generally used for the former and Latin symbols for the latter

VARIABILITY OF RANDOM SAMPLES
The ability of sample statistics to describe population characteristic
depends very much on the representativeness of the sample. To get sord
idea of the variation in random sampling (called random error), cons$
the data from a Mayo Clinic study of serum urea concentrations in 5,50
subjects .

	

I
Suppose that, having been provided with the values, we want to kn4

their mean and standard deviation but do not want to add up 5,50
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We 4-1 .-Distribution of Serum Urea Values (mg/dl) in a Sample'
In = 100) Drawn Randomly From a Population (N = 5,594)

n = 100

'Mean of this sample (x) is 36 . 56 and standard deviation (s) is 20.27; for
calculations of x and s, see paper 1 (January 1981 issue) .

numbers and do all the necessary further calculations on
that large a scale . The 5,594 observations can be con-
sidered a population in the statistical sense and a random
sample can be selected from it . Such a sample amounting
to 100 observations is presented in Table 4-1, an(] a mean
Mof 36 .56 and standard deviation (s) of 20.27 have been
calculated from it . In fact, when the necessary but tedious
calculations were performed by a computer, the popu-
lation mean (IL) was 35 .33 and the population standard
deviation (Q) was 21 .55 .
Since the samples drawn from a population vary, so do

the estimates derived from them. To illustrate, we have
drawn nine additional samples, each of size 100, from
the population described above. As Table 4-2 shows, the
means associated with the resulting set of 10 samples
varied from 32 .31 to 38.93 .

ACCURACY OF SAMPLE MEAN AS
ESTIMATE OF POPULATION MEAN
In judging how accurately a sample mean estimates (lie
population mean, one begins with the realization that
large samples are more reliable representatives than
small ones . The procedures to be describe(] here are
suitable for samples containing as few as 60 obser-
vations, provided that the population does not have
outliers or severe skewness .
With samples ofsufficient size, regardless of the under-

lying distribution in the population, 95% of all sample
means are within two standard errors of the population
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mean. The standard error of the mean (SEX) equals the
standard deviation of the sample divided by the square
root of the number of observations in the sample:

SEX =

So in sample 1 (Table 4-1), where s = 20.27 and n =
100,

SE3Z = 20.27 =

	

20.27
V00 10

And since the sample mean lies within two standard
errors of the population mean in 95 of 100 instances, one
can calculate the 95% confidence interval (CI) having the
limits :

95%CI=x ±2-SE
Considered strictly, the "2" in the equation above is an
approximation of a quantity that varies with sample size .
But with n = 60 it is 2 .00, and with extremely large
samples it is 1 .96 ; so when sample size is large, 2 usually
is satisfactory . Continuing the application to sample 1,
whose mean is 36.56:

95% CI = 36 .56 ± 2 - 2 .03
= 36.56 ± 4.06

Thus we can be confident, but not absolutely sure, that
the population mean lies somewhere between con-
fidence limits 32 .50 and 40.62 .
The 95% confidence interval provides a valuable indi-

cation of how much has been learned about the popu-
lation mean from the sample . To obtain a narrower
confidence interval, a larger sample is necessary . In the
example above, if a confidence interval with a width of
just 4 units instead of 8 .12 (40.62 - 32.50) is desired, the
sample will have to be increased to approximately 400
observations .

= 2.03

INFLUENCE OF SMALL SAMPLE SIZE
Thus far we have been using methods suitable for a
moderately large sample . When the sample contains
fewer than 60 observations, the number 2, by which we

Table 4-2.---Means of 10 100-Observation Samples from
Population of 5,594 Serum Urea Observations

Value Frequency Value Frequency

16 1 36 2
18 1 37 3
19 1 38 1
20 5 39 2
22 2 40 5
23 3 41 3
24 6 42 5
25 4 44 1
26 2 45 2
27 2 46 1
28 2 50 1
29 6 52 2
30 6 66 1
31 4 68 1
32 9 82 1
33 3 88 1
34 2 95 1
35 6 103 1

173 1

Sample no .
Sample mean

(mg/dl)

1 36 .56
2 33 .92
3 34.24
4 33 .0()
5 35 .47
6 36.67
7 35 .15
8 38 .93
9 32 . .31

10 36.57
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multiply the standard error, must be replaced by a larger
number (obtained from special tables) . This number,
which increases as sample size decreases, is designated
by the symbol

Thus, when sample size is less than 60, decreasing the
sample size increases the width of the confidence interval
in two ways: (1) the standard error of the mean is in-
creased, as illustrated in the previous section, and (2)
t*� _, itself, the multiplier of the standard error, is in-
creased . To illustrate, suppose that the standard devi-
ation of 20.27 derived from the 100-observation sample
had been obtained from a sample of only 10 obser-
vations . Then:

SE 3Z = 20.27 __ 20.27 = 6.413.16

But also, the 95% confidence interval must be cal-
culated thus :

95% CI = Z + t*�_, - SE
For the present sample (n = 10), t*� ., = 2 .26 . With this,
and with the same mean obtained from sample 1 (36 .56),

95% Cl = 36 .56 ± 2 .26 - 6.41
= 36 .56 ± 14.49

providing 95% confidence limits of 22 .07 and 51 .05 .
So-despite retention of the same sample mean and

standard deviation-the change from a basis of 100
observations to only 10 has changed the standard error
from 2 .03 to 6 .41 and the width of the 95% confidence
interval from 8 .12 (40.62 - 32 .50) to 28 .98 (51 .05 -
22 .07) .

Mayo Clin Proc, Apt 1981, Vol St

COMMENt
1 .

	

Note that the standard deviation is not very helpful in
describing the variability of the sample in Table 4-1 .
Specifically, the mean minus the usual two standard
deviations becomes negative, which no actual serum
urea value could be . As mentioned in the first paperol
this series, the standard deviation has its greatest use.
fulness in relating sample means to population means-
which is done by converting it to the standard error .

2 . It will become more apparent in subsequent papers
that much of the information required by statisticians in
order to make probability statements is available only in
special tables . Because the goal of this series is merelyto
acquaint the reader with basic concepts, the mechanics
of working with the tables will not be discussed . It is
hoped that the reader will not attempt to analyze his or
her data, or even design the experiment, without the
assistance of a statistician .
3 .

	

In this paper, we have dealt with the mean of a
simple measurement, the serum urea concentration ; and
of course it might as well have been body weight or days
of hospitalization . But further, the same concept of esti .
mating a population mean from a sample-and for de-
termining the confidence limits of the estimate-can be
applied to differences (such as case-by-case differences
in blood pressure before and after treatment) and to
proportions (such as proportion of patients benefiting
from a drug) . The concepts presented here have very
wide use in medical statistics . This will be illustrated in
future papers of this series .
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5. One Sample of Paired
Observations (Paired t Test)

Paper 4 showed how a sample drawn from a large population can be used
to provide information about characteristics of the population (such as its
mean value) and also how the accuracy of such estimates can be assessed.
In this paper, those methods will be applied in a procedure called the
"paired t test" to solve a medical problem .
formulation of the Problem.-The problem is to evaluate the effec-

tiveness of a drug in lowering diastolic blood pressure . The population of
interest consists of all patients who will receive the drug if it is used
clinically in the future . The problem may be stated in two questions : (1)
Will the drug reduce blood pressure? (2) If so, by how much?
With use ofRR-,, to represent the mean differencebetweenmeasurements

before (B) and after (A) treatment, if the drug is administered to the entire
population as defined, the questions maybestated statistically : (1) Is Ite-A =
0? (2) If not, how large is wR~A?
Of course, it is not possible to determine we-,, directly by measuring the

before-after difference in the total population of future patients . However,
the methods described in the preceding paper can provide inferences
about this parameter .

Collection of Data.-First, it is necessary to obtain a random sample
from the population . Suppose only a very small pilot study consisting of 10
patients (n = 10) is to be done . If it can be assumed that patients present
themselves in random order, the sample can be obtained simply by taking
the next 10 patients who need treatment . Because it is rarely possible to
conduct truly random collection in medical practice (as is often done in
population surveys, for example), the question ofthe representativeness4
the sample is an important aspect of any inferential study ; but it will rat
be pursued in the present paper.
Suppose the sample is obtained appropriately, blood pressure is me4.

sured, the drug is administered, and blood pressure is measured again . M
Table 5-1, note that two measurements are made on each patient . It h
because these two measurements are made on the same patient and that
are correlated, not independent, that the data are regarded as a singk
sample of pairs .
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Table 5-t .-Measurements of Diastolic Blood Pressure
(mm Hg) Before and After Administration

of an Anlihyperiensive Drug

SEa = 1 .6 mm 11%

In the sample, there is a mean decrease (n) of 2.2 min
Hg; and this serves as an estimate of drug effect in [lie
population . It implies that the drug may reduce blood
pressure .
However, that result is based only on sample data,

subject to random error (which means that other samples
from the same population probably would give different
results) . So one wonders : if there is no real difference
between 8 and A (the null hypothesis), how often would a
difference as large as 2 .2 mm Hg occur in repeated
samples from the population?
Question 1 : Is We-,, = 0?-The procedure is to make a

probability statement of the sort, "If a given assumption
orhypothesis regarding the population (such as Fee-,, = 0)
istrue, then the probability of obtaining this sample result
is no more than (a value to be calculated) ." And if
the probability turns out to be sufficiently small, that will
provide a basis for rejecting the hypothesis . In other
words, when the sample result (an observed fact) is nearly
impossible in conjunction with the hypothesis, one may
reject that hypothesis in favor of an alternative hypothesis
that seems more consonant with the data (for example ;
It6_A is greater than 0) . It is important to recognize that all
probability statements are "If . . . then . . ." statements,
expressing the probability that, under carefully stated
circumstances, something will happen or be true .

In the present example (Table 5-1), the first step toward
determining the quantity needed for completing the
probability statement is to calculate the size of the mean
difference relative to the standard error of the difference .
If the pair-by-pair differences include no outliers or evi-
dence of severe skewness, the following formula may be
used :

t = n /SES
(Notice that the variation associated with o, which is SEo,
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is based on the variation among the pair-by-pair
differences .) Substituting from Table 5-1,

t = 2 .2/1 .6 = 1 .375
And, using special tables or computing facilities, we find
that, if !1 19-A = 0, then the probability of obtaining a value
for t greater than 1 .375 is 0.101 . This probability is often
referred to as a P value ; so here, P = 0.101 . It means that
the observed difference would occur by random vari-
ation (without an underlying real difference) in 10.1 % of
samples .
The interpretation of this probability must be clear and

not careless . What can we say?
1 . We cannot reject the hypothesis tLB_A = 0 . Since the

observed results would occur fairly often even if the drug
had no real effect, that may be the case-no real effect .

2 . Conversely, we cannot rule out the possibility that a
real effect exists, since a real effect might have gone
undetected because of the small sample size . We can say
only that the evidence in favor of a real decrease is not
statistically significant .

Question 2: How Large IsWB-� t-I n this situation, it is of
interest io ask, "Whatvalues of tLO_A are consistent with the
observed results of our study?" The methods described in
paper 4 can provide a 95% confidence interval for we -,, :

95% CI =p ± t*� _, - SE
The value of t* � _, is obtained from a standard statistical

table ; and for the present example (n = 10), t*� ., = 2 .26 .
Thus,

95%CI=2.2±2.261 .6
= 2 .2 ± 3 .6

So we may be confident that the interval from - 1 .4 to
-+-5 .8 contains the true value of tLO_A. The confidence
stems from the fact that intervals constructed by this
method contain the true value in 95% of trials with
different samples . Obviously, the result obtained in our
small sample could have occurred with no real under-
lying difference or with a sizable positive real difference
(blood pressure decreased) or even a negative real differ-
ence (blood pressure increased) .
Was the Sample Large Enough?-In general, con-

fidence intervals are very useful in assessing the ad-
equacy of sample size . If an effect exists, the harder we
look for it the more likely we are to find it . A wide
confidence interval says that we have not tried very hard
(have not examined a large enough sample) ; and in that
circumstance, failure to produce a small P value should
not be regarded as demonstration that no effect exists .
To illustrate this point further, suppose that in [lie

previous example the same mean decrease ( n = 2 .2) and
standard deviation (s = 5 .1) had resulted from a sample
of size n = 100 . In this case, calculations similar to those
described above reveal that P = 0.001, indicating that (if

Patient Before (B) After (A) A (B-A)

1 110 111 -1
2 127 131 -4
3 132 138 -6
4 124 116 +8
5 118 117 + 1
6 131 132 - 1
7 104 99 +5
8 110 101 -1-9
9 126 120 +6
10 121 116 -1-5

A = +2 .2 mm I-ig
s = 5 .1 mmItg
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there is no real difference) random variation would pro-
duce the observed effect only 1 time in 1 ;000 . Similarly,
the 95% confidence interval becomes 1 .2 to 3 .2-much
narrower than with the original small sample and no
longer including 0 .

COMMENT
1 . One might ask, "How small a P value is required to
achieve statistical significance?" The answer to this ques-
tion depends on the circumstances of the particular stt)dy
and, in general, it is best not to think in terms of black and
white-significant or not significant . However, for guide-
lines one may consider P values between 0 .10 and 0.05
as suggestive of a difference, though not statistically
significant . The term "statistically significant" is usually
reserved for situations where P is less than 0 .05 ; and often
the evidence o( a difference is not considered conclusive
unless the P value is less than 0.01 .

2 . Although the evidence of a drug effect in the pres-
ent example, with n = 100, would be described as
statistically significant (not likely to occur in the absence
of a drug effect), the more important question-is it
clinically significant?-is still unanswered . Whereas the
statistician can help in addressing this very important
question by providing confidence limits, as in the exam-
ple, the ultimate decision must come frorn the clinician .

3 . To provide the paired observations for the paired t
test, each item in one data set must have an intrinsic
correspondence with one-and only one-item in the

Mayo Clin t'roc, May 1981, Vol si

other set . "Before" and "after" measurements from the
same person (as in our example) are a frequent source of
paired data . Pairing of data from different persons maybe
appropriate if the persons have been carefully matched.
kor instance, in comparing the effects of two drugs, an
investigator might exclude genetic variation by using
twins-giving drug X to one and drug Y to the other . The
resulting paired data would be analyzed as in our exam
ple . More commonly, there may be two or three factors
with major influence on response to treatment, making it
desirable to recruit subjects in pairs-the members of
each pair being similar to each other with respect to the
factors identified as most important . Then, after one
member of the pair is treated and the other is not, an
observed difference between them should reflect re-
sponse to treatment .
4 . The ways data can be analyzed are determined by

the way the study was designed . In point of fact, choosing
the appropriate study design so as to be able to answer the
questions of interest-and do so efficiently-is far more
important, and also more difficult, than choosing the
appropriate method of analysis .
Throughout this paper, many design considerations

have been omitted in the interest of keeping things
simple . The reader who is familiar with clinical trials for
evaluating drug effectiveness probably has asked the
question, "Shouldn't the study be double-blind with
controls?" These are important considerations indeed,
and they will be addressed in the next paper .
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6 . Comparing Two Samples
(The Two-Sample t Test)

Paper 5 described a hypothetical study evaluating the effectiveness of an
experimental drug in reducing diastolic blood pressure . The study design
consisted simply of obtaining measurements before and after the admin-
istration of the drug in a series of consecutive cases . Although this type of
study is satisfactory for many research objectives, it is not adequate for full
assessment of the effectiveness of a drug. Specifically, we want to know
whether an observed reduction of blood pressure was due to a biologic
drug effect or-in whole or in part-to a psychologic response of the
patients receiving the medication .

Study Design and Data Collection.-In order to isolate this psychologic
response, we can include in the study a control group . These patients are
like the others, but they are to be given only a placebo-that is, a
preparation that resembles the experimental drug in all outward respects
but has no biologic capability affecting blood pressure . The result obtained
in the experimental group will be compared with that obtained in the
control group .

Notice that, although both samples have been obtained from the same
population, they are two distinct, independent samples . Further, there is
no one-to-one matching between the individual subjects in the two
samples . Therefore a pair-matched analysis like the one used in paper 5
would be inappropriate . A more suitable method (among several) is the
two-sample t test .
Suppose the average change of diastolic blood pressure (from before to

after treatment) in the experimental group is a decrease of 3 .2 mm Hg with
standard deviation 5 .1 (Xt. = 3 .2, s f = 5.1), whereas the average change in
the control group is a decrease of0.5 with standard deviation 4 .0(ac = 0 .5,
sc = 4 .0) .

Is There a Differencel-Although the apparent effect of the drug is
greater than that of the placebo (3 .2 versus 0.5), we ask the familiar
question : What is the probability of obtaining such an apparent difference
of effectiveness between the drug and the placebo? Assuming that the data
contain no outliers or severe skewness, and noting that the standard
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deviations are similar, we compare the mean difference
between groups to the variability present in both groups :

t = SE-NC

Spooled

	

1 -4' '
in which:

	

,J nE

	

nc

aE - Sc =difference between mean change in experi-
mental group and mean change in control group

nE = numberof patients in experimental group (receiv-
ing drug)
nc = number of patients in control group (receiving

placebo)
Sno~,ed = a combination of the standard deviations of

the two groups
(Note that the denominator spooled 11n, + Ilnc is

analogous to the denominator in the equation for t in
paper 5 . It is the standard error of the difference in the
numerator . In all of our examples using the t test, no
matter how complicated the equation becomes-how
many factors or symbols are included-we are still com-
puting a relative deviate, dividing the numerator by its
standard error .

If we suppose that there were 100 patients in each
group, computation of Spooled gives 4 .58 ; and appropri-
ate substitutions yield :

3 .2 - 0.5t =

	

= 4.17

4.58

	

100 + 100

From suitable tables or computing facilities we find
that, if there were no difference between the effect of the
experimental drug and that of the placebo, a value of t as
large as 4 .17 would be obtained from 1 .8% of repeated
experiments (P = 0.018) . Thus the data are notconsistent
with the hypothesis of no drug effect at the P = 0.018
level . So we reject the null hypothesis : the observed
result is so unlikely to occur without a real underlying
difference that there almost certainly is such a difference .
How Much Difference?-As in paper 5, the next ques-

tion is- How much drug effect do these data imply? In this
example, the 95% confidence interval for the true mean
difference (drug effectiveness) is given by :

95% CI = (aE - SO ± t* - spooled

which, with appropriate substitutions, becomes :
95% CI = (3 .2 - 0.5) ± 2 - 4 .58 - 0.02

= 2 .70 ± 1 .30
= 1 .40 to 4 .00

Although we cannot be certain that this interval contains
the true difference, the method used to obtain the con-
fidence interval is one which leads to an interval that does
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contain the true difference in 95% of applications .
As in the previous paper, the most important question

must now be addressed by the physician : Is the effec-
tiveness of the drug significant clinically :'

COMMENT
1 . This example illustrates the importance of including a
control group in a clinical trial . If only the 100 patients
given the experimental drug had been considered, with.
out a control group given the placebo, a paired t test
would have demonstrated a statistically significant differ-
ence as it did in paper 5. But although the analysis would
have been valid mathematically, it could not have given
any indication as to whether the observed result was due
to the biologic effect of the drug .
2 . In practice, each patient in this study would have

been assigned to drug or placebo treatment by a process
ofrandomization . For example, the drug manufacturer-
using a randomization chart prepared by the project
statistician-might provide the physician with 200 num-
bered envelopes, each containing the substance to be
given to a different patient . Neither the physician nor the
patient would know the contents of any envelope (such
studies are referred to as double-blind), but this infor .
mation would be recorded and retained by both the
statistician and the manufacturer .
From the research standpoint, a randomized, double.

blind study design is desirable because of the need to
avoid biases in patient selection and assignment and in
measurement of the response to treatments-thus to
avoid compromising the basis for probability statements
in the subsequent analysis . From the patient-care stand-
point, the undesirable aspects of assigning treatment to
patients randomly and double-blind are obvious . The
justification of such management often rests on assump.
tions that the experimental treatment is not known to be
superior (or inferior) to the placebo and that this infor-
mation can be obtained only from a properly designed
study .

3 . In addition to the design considerations mentioned
thus far, numerous others would need to be considered in
developing a research protocol . In our example, we
might wish to reduce the large variation inherent in
measurement of blood pressure by taking multiple read.
ings . It would also be desirable to standardize the con.
ditions under which measurements are made, to ensure
their comparability . Restricting the age range or the range
of initial levels of diastolic blood pressure so as to obtain
more homogeneous samples might be advantageous . In
short, many factors would need to be considered, each
requiring the close cooperation of clinician and stat .
istician before the data are collected .
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Recent papers have dealt with a hypothetical problem of evaluatingN
effectiveness of a drug for reducing diastolic blood pressure . When a drug
is found to be efficacious, we want to know what influence other faclon
may have upon its effect . Specifically, in this paper, we shall measure IN
influence of initial diastolic pressure on the reduction achieved by the
drug .

Suppose the reductions of diastolic pressure in 10 study participaoh
were as listed in Table 7-1 . The first step in analysis is to exhibit the dati
graphically, relating the changes to initial values by use of a scatte,
diagram (Fig . 7-1) .

In order to quantify and summarize the association shown by the scatter
diagram, we draw a straight line through the group of points, as illustrated
in Figure 7-2 . I-low well the line fits the data is measured by the sum of the
squared vertical distances of the individual points from the line . Thus The
best-fitting line is the one for which this sum of squares is least, and it k
called the least-squares line . (There is a formula for the calculation .)

In general terms, the least-squares line may be described by the
equation :
y=a+bx

This is the linear regression equation, in which:
a = intercept, the point on the y axis where the regression line will cross

it, if extended that far (the value of y when x = 0) .
b = slope, the amount of change in y per unit of increase of x .

For the line shown in Figure 7-2, a =

	

-23.53 and b = 0.4671 ; so the
specific equation is :

y =

	

-23.53 -+- 0.467l x
We are also interested in measuring how closely the points cluster abHl

the regression line . The appropriate measure, denoted by sy.,,, is definedin
terms of the sum of the squared vertical distances from the regression line
(as shown in Figure 7-2) . Specifically, s y . x is defined as the square roold
this sum after dividing by n-2 . Rather than assign a special name to thk
statistic, statisticians usually write the symbol itself and pronounce I
"s-y-dot-x ." In this example, sy . x = 2 .257 .

In most applications, the feature of greatest interest is the slope, which
here represents the amount of post-treatment change in pressure Ihll
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mrresponds to a unit increase in initial pressure . AI-
1ltough we cannot determine definitely from a sample the
magnitude of the unknown true slope (usually represent-
ed by S) in the population, we can estimate it from the
wnple, test hypotheses about it, and establish con-
fdence limits as we did in the previous papers con-
cerning population means .
Specifically, in our example, the true slope R is esti-

mated by the sample slope b (0 .4671) . To test the hy-
pothesis that R = 0, we begin by comparing b to its
Itandard error (SE,,)-which depends on how closely the
sample points cluster about the fitted line . In the exam-
ple, SEb = 0.0751, so the test statistic is :

t = b/SEb
= 0.4671/0.0751
= 6.220

from suitable tables or computing equipment, we find
that, if p = 0, then the probability of obtaining a value of
has large as 6 .220 is less than 0.001 (P<0.001). So from
our hypothetical data, we reject the hypothesis a = 0
and conclude that the drug response does depend on
initial blood pressure .
The 95% confidence interval is given by :
95% CI = b ± t* � - 2 . SEb

where t* � - z is a number obtained from special tables . In
this case t*,, .2 = 2 .306 . Upon substitution,
95% CI = 0.4671 ± 2 .306 - 0.0751

= 0.4671 ± 0.1732
So the interval is from 0.2939 to 0.6403-well above

zero, thus confirming our rejection of the hypothesis that
the initial level and the amount of change were unrelated
IS = 0) . The data indicate that the initial level and the
amount of change are related .

COMMENT
1 . We have shown how the association between two
variables may be quantified by fitting a straight line to the
data . In doing so, we have considered only the simplest
o(situations . In practice, other factors may require atten-
tion : for example, how to modify the analysis ifthe scatter
diagram reveals outliers or skewness or associations that
are nonlinear, or how to evaluate additional variables
Isuch as sex or obesity) .
Two other considerations regarding the regression line

should be remembered . First, in graphing the regression
line the steepness of the line depends on how the axes are
scaled (whether large or small units are used) . Second,
extension of the regression line beyond the plotted data
may give rise to absurd implications .
2 . You may have noticed that we have not mentioned

a rather popular statistic called the correlation co-
efficient, usually denoted by r . Its popularity derives in

Table 7-1 .-Data for Hypothetical Example

'Initial diastolic blood pressure Unm I- Ig) .

4s

Change
(before 3s
minus
after)

in diastolic
blood

pressure 25

(mm Hg)

4s

Change
(before 35
minus
after)

in diastolic
blood

pressure 25

(mm Ng)
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Initial diastolic blood pressure (mm Hg)

Fig.7-1 .

	

Scatter diagram of initial diastolic bloodpressure and change
in diastolic blood pressure, from Table 7-1 .
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Initial diastolic blood pressure (mm Hg)

rig. 7-2.

	

Scatter diagrarn (Fig . 7-1) with regression line and lines from
data points to regression line for least-squares determination.

part from the fact that the correlation coefficient does nut
depend on the units of measurement (for example,
pounds or kilograms) as the slope of the regression tine
does . The correlation coefficient is a somewhat corn-

Subject

Pressure
before

drug (B)*

Pressure
after

drug (A)
Difference

(B - A)

1 104 80 24
2 110 81 29
3 Ito 81 29
4 111 85 26
5 118 83 35
6 124 93 31
7 126 91 35
8 127 89 38
9 131 95 36
10 132 93 39
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Fig . 7-3 .

	

Examples of similar correlation coefficients resulting from
different conditions . Top Panel, Smallness of scatter about regression
line . Middle Panel, Steepness of slope . Bottom Panel, Presence of
outlier .

Mayo Clin Proc, July 1981, Vo111

plicated function of the test statistic b/SEb and the sampk
size . The sign of b (that is, whether the regression lirr.
runs upward or downward) determines whether r will N
positive or negative ; and when b = 0, r = 0. Tht
calculation of r can be used to test the hypothesis that y4.
not related to x .
However, if y is related to x, r serves poorly in

&

scribing how, because it is ambiguous . Although a large
value of r (within its mathematical limits of + 1 and -1+
suggests that the correlation is strong, faith in this simple
implication may be misplaced . The value of r can be
increased by increase of b and also by decrease of sr ,,
(since SEb is directly proportional to sy .x) . These com'
ponents are quite different : b (the slope of the regression
line) indicates how large an associated change is ; and s�
(the closeness of the data points to the regression line
indicates how consistently the change occurs . But r, ast
single value, gives no indication of the relative influena
of the two components in determining its value .

Notice in Figure 7-3 that, although the correlation
coefficient is virtually the same in each instance, If*
associations between y and x are much different . Tlx
high correlation coefficients are due, successively, M
smallness of the scatter about the line, to steepness of the
slope, and to presence ofan outlier . These examples also
illustrate the importance of looking at a scatter diagram
whenever one does a regression analysis .
To describe the association between two variables in

terms of summary statistics, it is best to use both b and
SY.' .

r- .75
GY .W 2.3
b- .34

r= .76

b = 1.62

"
"

r = .71
*r,�= 16.7

/til
b = 2.00

L I
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8. Comparing Two Proportions :
The Relative Deviate Test and
Chi-Square Equivalent

Paper 7 presented a method for comparing observations of two continuous
variables . Such variables are called "continuous" because they can have a
continuum of values ; and the measurement of interest in paper 7 was
blood pressure .

FORMULATION OF THE PROBLEM
In this paper, we consider how to compare dichotomous variables, which
are observed as yes-no, alive-dead, normal-abnormal, and so on . For an
example, let us compare the incidence (yes-no) of a side effect (headache)
in association with each of two drugs : 15 of 50 cases with drug F and 8 of
50 cases with drug G.
Note that the dichotomous observations of each group can be sum-

marized by a proportion, which will express the incidence within that
group as a degree on a continuous scale of possibilities . Let IT, and Tr c;
represent (lie proportions of the incidence of headache associated with
drugs F and G, respectively, in the populaton-the true (but unknown)
proportions . For an estimate of z,:, , we can use the sample proportion p,
= 0.30 (15150) ; and for nc;, we can use the sample proportion pc: = (1.16
(8/50) .
Employing these terms, we state the familiar two questions : (1) Is there a

real difference between these groups-that is, does rrr: = 7r(-,? and (2)
How large may the difference be?

QUESTION 1 : IS THERE A DIFFERENCE?
If wF = Trc, (if the proportions nF and IT (, are the same), we can write this
unknown common proportion as -rro . To obtain a corresponding sample
statistic (p� ) in accord with the null hypothesis that there is no underlying
difference between the samples (that [lie apparent difference is only
random variation), we pool the samples :

15 + 8
po =

	

= 0.23
50 + 50

This resulting value of 0.23 is an estimate of the common proportion
assumed (for test purposes) to satisfy the hypothesis in the question .
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Again we compute the ratio (here we use the test
statistic z) of the difference between the two data sets to
the standard error of the difference (the variability within
each data set as calculated with the sample statistic p� ) .
Still assuming that the null hypothesis is true (no differ-
ence between the samples), we use the common propor-
tion po in the denominator for this calculation .

PF - Pcaz

po(1-po) ( 1
nr

0 .30 - 0.16

0 .23(0.77) ( 50

	

+

	

5,0

= 1 .663
In this example, we will reject the null hypothesis ('nr

_ n( ;) if either drug is found to cause fewer headaches
than the other . (This differs from the interpretations in the
two preceding papers . There we asked, a priori, "Is A
superior to g?" Here we are asking, "Is either F or G
superior to the other?") Hence we look for the probability
of getting a value of z that is either 1 .663 or higher
(signifying more headaches with drug F) or - 1 .663 or
lower (signifying more headaches with G) . From appro-
priate tables, this probability P = 0.096; so we remain
unsure that either drug excels the other in regard to
incidence of headache .

QUESTION 2: HOW LARGE MAY THE DIFFERENCE
BE?
An approximate 95% confidence interval for er r - We,
can be calculated with this formula :

95% CI = pr - pc ± 1 .96 "

	

PF(1-pF) + Pc(1-PG)
nF nc

Note that because the confidence interval will contain
values of ar r and itc; that are unequal, we can no longer
use po in our estimate of the standard error .

95%CI=0 .14 {-1 .96

	

0.30500.70 +

	

0.1650.84

= 0.14 ± 0 .163

Thus the 95% confidence limits are -0.023 and
+0.303 .
Even though the P value is greater than 0.05 (that is,

0.096) and the 95% confidence interval for 'nr - Trc;
contains 0, we still might conclude that the data provide
suggestive evidence of a superiority for drug G. Our large
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confidence interval (reflecting the somewhat small sam-
ple size) indicates that drug G may offer a substantial
advantage despite the lack of statistical significance.

It is a convention that P values are to be considered
significant only if they are less than 0.05, and some
investigators require P values less than 0.01 for cores
vincing evidence against the null hypothesis . However,
the distinction between significant and nonsignificant
test results depends on circumstances in the individual
study ; and often an intermediate interpretation is appro-
priate, as it is this time . More generally, a P value should
be interpreted as a measure of the strength of the evi.
dente against the null hypothesis . Such strength can have
many degrees, and it offers more meaning than
"enough" and "not enough."

COMMENT
1 . An additional lesson is concealed in this example.
Suppose the investigators had not thought carefully aboul
the problem of associated headaches until they saw that
more occurred with F than with G. They might have
formulated a hypothesis that G was superior in this regard
and tested it looking only for a difference in one di.
rection . The outcome would have been a statistically
significant superiority for drug G (P = 0.048) .
What is the probability of the investigators making i

mistake when they take this approach to hypothesis
testing? Let us suppose that there is no real difference
between F and G . The probability of erroneously corn
cluding that G is superior is 0.048 . However, it is equally
likely that the sample results would favor F by the same
amount ; and this also would give P = 0.048 . Thus the
probability for error is the probability of concluding G
superior to F plus the probability of concluding F superior
to G, which is 0.048 + 0.048 = 0 .096 .

In general, how do we determine whether to look for
differences in just one direction (a one-sided test) or in
both directions (a two-sided test)? The answer is to formu-
late the hypothesis clearly, and before the data are col-
lected . The way the hypothesis is stated will determine
how the test should be done . For example, when we ash
the question "Is experimental drug A superior to pla.
cebo?" we clearly are looking for a difference in only one
direction . If the experimental drug is found to perform
either the same as or worse than placebo, the same
negative conclusion will be reached . Since we are nd
interested in establishing that A is worse than placebo, I
one-sided test is appropriate . (Notice that this was the
situation in our previous examples, where all our test
were one-sided .)

Conversely, when comparing two drugs (as in the
present example), we may ask : "Is either drug superior III
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the other?" In this instance, we clearly are interested in
establishing superiority in either direction, so a two-sided
lest is appropriate .
The decision as to whether a test should be one-sided

a two-sided illustrates a very important principle in
statistics : the study objectives and specific hypotheses to
be tested should be formulated before the data are
collected .

Z . Various computational formulas are available for
performing the test described in this paper . Since they,all
give the same P value, they are equivalent . The formula
flat is simplest computationally and is used most com-
monly is called the chi-square (X2 ) test . (The number
actually computed is z 2.) Although we have presented
the computations in terms of the relative deviate statistic
in order to provide a better understanding of the test, in
practice, tests for comparing two proportions are most
commonly referred to as chi-square tests .
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3 . In our previous examples, the computed test statis-
tic was usually denoted by the letter t . Although any letter
could have been used, t ordinarily is chosen for those
situations because it corresponds to the name of the
statistical tables used in obtaining the related P values .
For the tables used in the relative deviate test for com-
paring two proportions, the letter z is commonly used .
When the test is based on the simple computational
formulas (which yield the square of the relative deviate z),
the test statistic is denoted by the symbol X2 .

4 . After presenting methods for describing a set of data
in papers 1-3, we introduced the concept of inferential
statistics in paper 4 and provided examples in papers 5 to
8 . In the remainder of this series, we shall focus on some
of the most common topics that arise in medical research :
evaluating a new diagnostic procedure, sequential meth-
ods, survivorship studies, and normal values .
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When a new medical procedure has been developed, such as computer-
assisted scanning, it is necessary to evaluate the contribution to patient
care that will result from its use . In this situation, the subjective opinion of
the physician responsible for patient care will be essential, and perhaps it
will determine the ultimate decision as to the procedure's usefulness .
However, it is desirable also to perform studies that will provide objective,
quantitative data . Three aspects that should be considered are (1) the
reliability of the procedure, (2) its accuracy, and (3) how it compares with
conventional methods .
We shall use evaluation of an experimental computer-assisted scanner

to illustrate how each of these concerns may be addressed . The statistical
methods employed will differ slightly, according to whether the measure-
ment of interest is dichotomous (such as presence orabsence of a tumor) or
continuous (such as tumor size) . We shall consider the dichotomous type
first .

Mayo Clin Proc 56:573-575, 1981
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9. Evaluating a New Diagnostic
Procedure

DICHOTOMOUS DATA
Reliability.-The reliability of a method is its ability to provide the same
answer in repeated observations . (The terms reliability and precision are
often used interchangeably .) Reliability has two aspects : inter-interpreter
and intea-interpreter .

For evaluation of inter-interpreter reliability (consistency of observations
by different interpreters-in our example, radiologists), a set of scans
showing a broad range of abnormalities, and including some showing
normality, are presented in random sequence for interpretation by each
radiologist participating in the study . Of course the true status of each
subject must be unknown to the radiologist at the time he views the scan
(but this information should be available for subsequent assessment of the
accuracy of scan interpretation) . This type of evaluation requires a large
number of scans : at least 100, and sometimes more.

It is also desirable to evaluate intea-interpreter reliability (the consistency
with which the same interpreter arrives at the same diagnosis when
viewing the same scan) . This may be accomplished by repetition of the
study outlined above . However, any possible learning effect should be
minimized . A method often employed to accomplish this, at least in part, is
to use a large number of scans, randomly rearrange the order for each
repetition, and separate the repetitions by suitably long time intervals . It is
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Fig . 9-1 . Measurements made by experimental method related to
those from reference method, with lines of identity (solid) and ± 10%
error (dashed) .

important that this study, like the one above, be done
without knowledge of the true status of the patient .
Accuracy.The accuracy of a procedure is measured by

its ability to give the right answer . Usually this is ex-
pressed by the rates of false-positives and false-negatives .
Here, of course, it is necessary that the true status of the
patients be established . In many studies this will be done
by surgery or other definitive diagnostic procedures; in
others, the status can be determined by follow-up . Since
the willingness of the physician to submit his patient to
further study or surgery may be reduced by a negative
result of the procedure actually under question (in this
example, the computer-assisted scanning), determina-
tion of how many negative results are false may become
the more difficult problem .
The number of patients required for estimation of the

true rates of false-positives and false-negatives depends
on how low these rates are, how accurately they need to
be estimated, and what proportion of patients in the study
have tumors . It is often desirable to use only patients who
are scheduled for surgery, thereby including many sub-
jects whose findings are positive and at the same time
minimizing the problem of assessing false-negatives,
since the surgery will reveal the true status in each case .
Reasonably accurate estimation of these rates usually

requires a large number of subjects-a group of IOU
might be considered a small but acceptable sample. In
order to determine the adequacy of a contemplated
sample size, the investigator must indicate approxi-
mately the rates anticipated . The statistician can then
indicate how accurately those rates can be estimated
from a sample of the size contemplated .
Comparative Studies.-The usual objective of a corn-
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parative study is to compare the accuracy of the experi .
mental method (scanning) with the accuracy of one or
more conventional methods (such as conventional roent-
genography) . An important first step is to define the
patient group to be studied . It is essential in this type of
study that eligibility for the study should not depend in
any way on the outcome of either the experimental or the
conventional method . For this reason, the patient's entry
into the study should be determined before he is exam-
ined by either method . Once a patient is admitted to the
study, examination by each method should be done
without knowledge of the results of the competing
method . Additional knowledge (certain clinical infor-
mation, for example) should not be available with either
method (unless such information is considered an in-
tegral part of that method) .

For ascertaining the relative accuracy of the two meth-
ods, the true status of the patients must be known. rot
example, if method A indicates the presence of a tumor
when method B does not, resolution of this difference
may be obtained from subsequent surgery . In this situa-
tion, the willingness to do surgery should be the same
when A is positive and B is negative as when A is negative
and B is positive . If it is known beforehand that the rate of
false-positives for each method is near zero, this difficulty
does not arise .

In the absence of a definitive diagnosis, the best that
can be done is to measure agreement between methodsA
and B without attempting to measure relative accuracy.

CONTINUOUS DATA
The concepts of reliability, accuracy, and comparative
studies described above still apply when the measure-
ment of interest is continuous-as is tumor size . How-
ever, some of the statistical methods are slightly different.

For example, the reliability (consistency) of observa-
tions may be expressed by the standard deviation among
repealed measurements . It sometimes happens that the
error tends to be larger when the quantity under study is
large-errors may tend to be larger in measuring a large
tumor than a very small one, for example . To counter
this, it may be appropriate to express reliability by the
coefficient of variation, which is the standard deviation
divided by the mean (s _ R) .

In measuring accuracy, we are concerned with how
closely repeated measurements cluster about the true
value . Sometimes closeness is best measured by the
algebraic difference from the true to the observed value.
When the difference seems to be proportonal to the
magnitude of the true value, it may be more appropriate
to express the difference as a percentage ofthe true value.
Often a graph such as that shown in Figure 9-1 is helpful
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in evaluating accuracy . A graph of the cumulative dis-
uibution ofthe error (expressed either as a difference or as
percentage error) also may be useful, or perhaps quoting
appropriate percentiles from the cumulative distribution
will suffice . Sometimes the absolute magnitudes of the
error (in which negative signs are disregarded) are most
informative .
When results from two methods of measurement are to

becompared and the definitive measurement is available
(such as tumor size determined at surgery), one can
tabulate the errors for each method and compare the two
distributions of error . A statistical test of significance also
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may be performed (based on the values of the observed
errors-perhaps using a paired Student t test) . However,
statistical significance ordinarily is of minor concern in
evaluating a new procedure .

COMMENT
Once the descriptive techniques described above (and
perhaps others) have been employed, the ultimate ques-
tion, are the reliability, the accuracy, and the improve-
ment over existing methods good enough? must be an-
swered by the physicians .
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10 . Normal Values

In interpreting the significance of a laboratory measurement, it is often
helpful to know how the value obtained in a given case relates to a set of
values from a healthy reference population . What percentage of healthy
persons have higher (or lower) values/

For this purpose, we must find the distribution of the variable in the
healthy population ; and that process is the topic of this paper .

ESTIMATING NORMAL VALUES
Distribution in Sample.-The basic approach is the same as in several

previous undertakings : since it is not possible to make observations of
every member of the population, we rely instead on estimates derived from
a sample . For illustration, consider the population of 5,594 serum urea
values in paper 4 (Estimation From Samples) . Since those values were
unknown to us, we drew a sample of 100 values randomly from the
population with which to estimate characteristics of the population (such
as its mean). The same values are presented again in Table 10-1 with
percentile values added.
As usual, the high percentiles are matched to the large values, and the

percentile matched to a value indicates what percentage of all the values
rank lower . Thus (lie largest of the 100 values (173 mg/dl) is the 99th
percentile (P,)g) ; the next value (103 mg/dl) is the 98th percentile ; and so
on . If there were 200 values in the sample, rather than 100, the largest
observation would estimate the 99.5 percentile ; and if the loth largest
value were still 82 mg/dl, then that would still be our estimate of the 95th
percentile .
As you may have noticed in Table 10-1, 95% of the observations were

less than 82 mg/dl ; but 95% were also less than 69, or any number
between 82 and 69 . As a result, any of these numbers could be used to
estimate the 95th percentile . Rather than choosing the largest, it is con-
ventional to choose a value in between (such as 75) . Various strategies for
making an appropriate choice have been developed and are commonly
used. In general, larger samples produce smaller gaps; and sample sizes
should be made large enough so that the ambiguity resulting from this
problem is negligible .

Provided with a distribution of percentile values in a sizable sample, a
physician can determine approximately how his patient's serum urea
value relates to those in the reference population . From Table 10-1, for
example, he would know that a value as large as 50 mg/dl is uncommon--
estimated to occur in only 10% of that population .

Reliability (and Sample Size).-As in any situation where we must rely
on sample estimates, we are concerned with their reliability . Here we
consider percentile estimates from 10 samples of 100 each, drawn from
the population of 5,594 (the same samples drawn in paper 4, now
represented by selected percentile values in Table 10-2) . Clearly, the
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values for Pso are more uniform than the values for the
very high percentiles (P9o, P9s, and P99 ) . Although a

sample consisting of 100 values ordinarily is adequate for
estimating the center of a population, it is a very small
basis for estimating the outer percentiles (such as Ps or
P95) .

Refinements.--In our example we have deliberately
oversimplified the problem of estimating normal per-
centiles . Normal values of many variables are affectedby
the age and sex of the subjects . Statistical methods are
available for estimating age- and sex-specific percentiles,
but they obviously require data from more subjects .

COMMENT
As mentioned in paper. 1, it is a common misconception
that, in general, 95% of population values lie within two
standard deviations of the population mean. (The propo-
sition is true only under special, infrequently occurring
conditions .) This misconception has given rise to the
regrettable practice of estimating the 2 .5 and 97 .5

	

er.

'Mean of sample is 36.56 ; standard deviation is 20.27 . (Data same as in

	

centiles simply as the mean ± 2 standard deviations ("x 3
Table 4-I, with percentiles added .)

	

2s). Applied to the first sample of 100 serum urea values

Table 10-2 .--Mean and Selected Percentiles of Serum Urea Values in

	

in our example (presented in Table 10-1), x ± 2s yields

10 Samples (Each n = 100) "

	

36.56 -±- 2 . 20 .27, giving the impossible result P2 .5 -_
- 3.911 mg/dl . Clearly, the method is unsuitable for gen.
eral use .

For two nontechnical papers providing an excellent,
more detailed discussion regarding the choice of a suit-
able reference population and the estimation of popu .
lation percentiles, see Elveback."
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normal range . Mayo Clin Proc 47:93-97, 1972
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Table 10-1 .-Distribution o) Serum Urea Values ina Sample (n = 100)
Dawn Randomly From a Population (N = 5,594)"

`Samples presented in Table 4-2 .
tFrom Table 10-1 .
tThe standard deviation (s) of the 10 values listed directly above .
§From population of 5,594 values (paper 4) .

Values for selected percentiles

Sample
Mean,
mg/dl Pso P90 P9s P99

it 36.56 32 50 82 173
2 33.92 31 50 57 103
3 34 .24 31 50 62 123
4 33 .00 31 43 52 86
5 33 .47 31 46 60 220
6 36.67 32 48 56 172
7 35.15 30 52 61 123
8 38.93 32 50 69 388
9 32 .31 30 48 56 93
10 36.57 32 46 55 174

st 2 .07 0 .8 2 .7 8 .8 89.3

Population
values§ 35 .33 31 48 60 124

Value,
mgldi

Frequency and
percentile (P)

value,
mgldl

Frequency and
percentile (P)

173 1 36 2
103 1 35 6
95 1 34 2
88 1 33 3
82 1 (P95) 32 9 Win)
68 1 31 4
66 1 30 6
52 2 29 6
50 1 (P9o) 28 2
46 1 27 2 (Pzs)
45 2 26 2
44 1 25 4
42 5 24 6
41 3 23 3 (P ln)
40 5 (P75) 22 2
39 2 20 5 (PS)
38 1 19 1
37 3 18 1

16 1
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11 . Survivorship Studies

Definition of Study Group.-In every study ofsurvivorship-as in virtually
all medical research on human subjects-the first requirement is to de-
scribe the group studied . The reader of the report must be told the nature of
the group so he can judge whether his patient or group is like it . The
description should include :

1 . The source of subjects and the period in which they entered the
study, with notice of any considerable selection bias (practice in a general
hospital or a specialty clinic, and so forth) .

2 . The medical problem of interest : what it was, and how its presence
was determined . In some studies it is desirable to distinguish subtypes of
[lie problem, or degrees of severity .
3 . The treatment, if any .
4 . All exclusions of subjects from the study, and the reasons for them .
5 . Characteristics of the study group : their age and sex distributions ; if

pertinent, their area of residence, occupations, economic status, and race ;
and so on .
6 . Complicating features (associated diseases, and so forth) if it seems

they may affect survival .

DATA COLLECTION AND ACCOUNTING
Completeness of Follow-Up.-The problem in follow-up is the practical
difficulty of making it complete enough . Much effort and many stratagems
may be justified, because a case "lost to follow-up" cannot be ignored .
Even if entirely excluded from the analysis, it must be mentioned in the
report and remembered in judgment, because cases lost may not have had
the same outcome as the cases traced . No amount of sophisticated
mathematical manipulation can overcome failure of follow-up in a sizable
number of instances .

Initial Event.-In survivorship studies, each case must have an initial
event from whose date the period of observation is counted . This may be
birth, for congenital disease ; but usually it is diagnosis, surgery, or begin-
ning of treatment . Although the onset of disease might be very meaningful,
dating of onsets is often difficult . Surgical and hospital deaths may be
excluded (if exclusion is desired) by beginning at a time such as "30 days
after operation."
Accounting of Follow-Up Period.-Since the initial event does not

occur simultaneously in all cases, the lengths of follow-up are not equal at
any given date . Survivorship analysis is based on an equal follow-up
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Table 11 . 1-Minimal Information to be Recorded for Study
of Survivorship

1 . Sex
2 . Date of birth (to give age at initial event)
3 . Date of initial event
4 . Date of latest follow-up (of death, if dead)
5. Status at latest follow-up (dead or alive)
6. Cause of death (if available)

interval, however-which is attained at different times,
case by case . A subject becomes eligible for inclusion in
analysis of survival for a given period when that much
time has passed since the initial event in his case . Thus a
patient whose cancer was resected 3 years ago is eligible
for inclusion in analysis of 3-year survival, despite having
died of recurrence 2 years after the resection . In 2 more
years he will become eligible for 5-year analysis ; but he is
not eligible for it now, even though we know now what
his status will be then . To advance a 3-year nonsurvivor
to the 5-year calculation would unbalance it, because we
do not know how to advance (as alive or dead?) the other
3-year subjects presently surviving-who must be con-
sidered with him .
Data Collected.-The minimum of information on

each subject for routine statistical analysis is listed in
Table 11-1 .

ANALYSIS OF DATA
Direct (Ad Hoc) Analysis.-Direct determination of a
survival rate is done with this formula :

Subjects who survived through the period of observation

Subjects who survived that long plus those who
were eligible but died

Single-Period.-Some years ago, it was usual to ana-
lyze survival data for the 5-year rate alone . For example,
if gastrectomy had been performed on 84 patients 5 or
more years previously, and at 5 years after operation
(case by case) there were 42 surviving, the 5-year sur-
vivorship was 42/84 = 50% .

However, single-period analysis has two major in-
adequacies . First, a single-period rate does not reveal
survivorship at any time preceding or following the end of
the period chosen . Second, a single-period analysis (un-
less the period is brief) excludes a great deal of data an
investigator is likely to have accumulated from more
recent cases .

Serial Determinations .-It is possible, of course, to
perform direct-method calculations on periods expand-
ing from the initial event (1-year, 2-year, 3-year, for
instance ; not first-year, second-year, third-year), each
time using all the cases eligible for the period being

Mayo Clin Proc, Nov 1981, Vol 56

considered then . These serial determinations should re-
veal any trend within the maximal period analyzed .

However, the resultant series of rates may not be very
accurate . Indeed, if there has been less mortality among
early cases than recent ones, this method may produce
survival rates that rise with the length of follow-up ; and
some degree of such distortion may be present without
being obvious . And each determination still excludes
data from the computations . Therefore this method is
often not a good choice . For a more detailed nontech-
nical discussion, see Berkson and Gage.'
Actuarial (Life-Table) Analysis.-Typically more ac-

curate than the direct method is the actuarial method.
This is based on the question, applied to each day of
observation n (n = 1, 2, . . .) : "For subjects who survived
n days, what is the probability (P�) of surviving one more
day?" (To estimate this probability, we divide the number
of subjects who actually survived n + 1 days by this
number plus the number who died on the n + 1s( day .)
The probability of surviving from day 1 through day n is
then estimated by the product of the probabilities of
surviving each day (P r - P2 . . . P � ) . Although the com.
putations for this method may appear cumbersome in
computing a 5-year survival rate, they are greatly sim-
plified by the fact that, except for days on which deaths
occurred, P� = 1 . (And typically, for very large data sets,
the computations are performed by computer .)
The major advantage of the actuarial method is that it

utilizes all the available data : every subject is counted for
whatever time he has been followed, no matter how
brief. This makes the estimated survival rates more re-
liable . Second, the rates for successive intervals are
combined in a way that excludes distortion . A curve that
makes survival appear to increase as time passes is not
possible .

Deaths Due to Unrelated Causes.-Thus far we have
described determination of the gross death rate among a
study group . However, if any of the deaths were due to
causes other than the risk factor under study--and if the
investigator is sure of his knowledge in every case-he
must decide whether to determine and report the cause-
specific death rate . This is accomplished by treating as
deaths only those instances caused by the risk factor.
Unrelated deaths are treated as lost to follow-up at timed
death . Usually the particular study dictates the greater
interest, and sometimes both rates are of interest .

PRESENTATION OF RESULTS
Generally the most effective method for describing the
survival experience of a group of patients is to graph
survival rates against time, as shown in Figure 11-I .
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To provide perspective on the outcome of an analysis,
a comparison with normal survivorship may be shown.
The appropriate norm is experience in a segment of the
general population, adjusted (from published tables) to
match the study group in respect to age, sex, and perhaps
other features that seem pertinent . These rates will indi-
cate the survivorship that would have been expected in
the study group if it were representative of the general
population . Additionally, expected 5-year or 10-year
rates might be presented in the text .

COMMENT
The principal concern of this paper is to point out the
need to take varying lengths of follow-up into account in
studying survivorship . We hope that has received suf-
ficient emphasis above .
Two other ideas remain for presentation here .
1 . The methods for analyzing survival data have been

developed more recently than the other statistical meth-
ods we have presented, and still newer techniques are
being proposed continually . Procedures are available for
testing the differences between two or more survival
curves, for testing the association between survival and a
continuous risk factor (such as the serum cholesterol
concentration), and for performing such tests after ad-
justments for other relevant factors .
2 . Interpretation of results is often difficult, however .

Because survivorship studies generally are observational
rather than experimental, questions arise regarding what
has caused the differences that are found .
To illustrate, suppose that two different surgical tech-

niques were used to treat patients having the same dis-
ease and that 10-year follow-up was obtained on all
patients treated with each method . It would be tempting
to attribute any difference in survivorship to the differ-
ence in surgical techniques . Such a conclusion might not
be valid, however, since the disparity could be a result of
other factors . For example, the two groups of patients
may have been dissimilar with respect to factors that
influence the choice of surgical technique (possibly se-
verity of the illness or age of the patient) . Unfortunately,
sophisticated statistical algorithms are of only limited
usefulness in attempts to distinguish effects due to the
factor of interest (surgery) from effects due to other
causes .
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rig . 11-I . Survivorship (actuarial analysis) : as observed in study
group (solid line) and as derived from population segment similar in
regard to age, sex, and date of birth (broken line) .

In order to establish the relative merits of the two
surgical techniques, it would be best to design an ex-
periment specifically with this purpose in mind . Ideally,
patients would be assigned randomly to either method,
enabling a statistician to make a valid probability state-
ment in comparing the two procedures.

Notice that this was the approach in the experimental
studies described previously in this series . For example,
the experimental study described in paper 6 (Comparing
Two Samples) was designed carefully, in advance of data
collection, so that a direct comparison could be made of
the reduction of blood pressure by each of the two drugs
used . When a difference between drug effects is observed
in a properly designed experimental study, we can make
a valid probability statement regarding the hypothesis
that it was caused entirely by other factors instead .

Thus, although an observational study is often con-
siderably more convenient and less expensive than a
carefully designed experiment, one must also consider
the quality and interpretability of the results ultimately to
be obtained .
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In this paper we shall consider whether headache is more frequent with
drug F or with drug G-which is the same question that was addressed in
paper 8, but our method will be different. For the example developed in
paper 8, the study was begun by randomly assigning half of a series of
patients to receive drug F and the other half drug G; and when the
observations had been made, the investigator tested the hypothesis that the
frequency of headache with each drug was the same, using an appropriate
statistical method .

This time, however, we wish to monitor the data as they are being
collected, with a view toward terminating the trial early if either drug
appears definitely superior to the other. As in our previous papers, if the
data lead us to conclude a difference-whether at an interim review (with
consequent termination of the trial) or at completion-we will want to
know the corresponding Pvalue. That is, if no real difference existed and
our trial were repeated many times, what proportion of those trials would
provide such strong evidence of a difference? However, for reasons to be
discussed later (in the Comment), the testing methods described in paper8
are not valid for use with a sequential evaluation of the data: modifications
are required .

All sequential methods that have been developed use objective pre-
determined criteria for termination of the trial . To illustrate, let us suppose
that the investigator in our hypothetical example decided he would be
willing to study a maximumof 120 patients in a clinical trial, 60 to receive
drug Fand60 drug G by random assignment . He plans to evaluate the data
when each increment of 40 observations becomes available. At each
evaluation, he will use the methods described in paper 8 to compute a
chi-square (X Z) statistic . If any of these statistics is sufficiently large, the
trial will be'terminated with the conclusion that one drug is superior to the
other.
How large is "sufficiently large"? To ensure that the conclusion of a

difference will not be reached erroneously in more than 5% of such
studies, specially prepared tables (not the tables of the XZ distribution
referred to in paper 8) must be used . When statistical significance is
indicated, the tables also provide the corresponding Pvalue. These tables
indicate that the first 40 cases should yield a Xz value exceeding 11 .8, or
the first 80 cases 5 .9, or 120 cases 3 .94 .
Suppose that in the first group of 40 patients, headache is reported by 5

of the 20 who received F and by 12 of the 20 who received G . These data
yield a XZ value of 5.0 . Since this is less than 11 .8, the observed difference

Mayo Clin Proc 56:753-754, 1961
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between F and G is not sufficient to warrant stopping the
study at this point .

Therefore a second group of 40 patients is enrolled and
observed ; and the combined results of the two groups are
headache in 10 of 40 who received F and in 22 of 40 who
received G. These numbers result in a XZ value of 7.5 ;
and since 7.5 is greater than 5 .9, the evidence at hand is
sufficient to warrant termination of the study with small
risk that further data would negate the apparent superior-
ity of drug F .

COMMENT
1 . In this example, it might have been tempting to com-
pare each observed XZ value to percentiles of the tabled
XZ distribution, as in paper 8. With this strategy, one
would have obtained a P value of 0.025 at the first test
and-since this is less than b.05-would have concluded
that the difference was statistically significant . But how
often will an experimenter using this strategy reject the
null hypothesis incorrectly?
By definition, the probability ofobtaining a statistically

significant result (P<0.05) at the first review is 0.05 .

Mayo Clin Proc, Dec 1981, Vol 56

However, the probability of obtaining this result on re-
view o(groups 1 and 2 combined (but not group 1 alone)
is 0.033; and the probability of obtaining it on review of
groups 1, 2, and 3 combined (but not group 1 or groups 1
and 2 combined) is 0 .024 . Since the null hypothesis will
be rejected under any of these three circumstances, the
probability of rejection is 0.050 + 0.033 + 0.024,
which equals 0.107.
The reader should remember that, if one makes se-

quential evaluations of data, special methodology should
be supplied by a statistician .
2 . The term sequential, in statistics, refers to the ap-

proach to study design and data analysis in which the
data are reviewed at various points during the course of
the study . Procedures have been developed for per-
forming a test of significance as each observation is
added to the accumulated evidence, but they are gen-
erally impractical and rarely used . Such plans are often
referred to as fully sequential . On the other hand, the type
ofsequential design that we have described (where a test
is performed as successive groups of observations are
added to the accumulation) is referred to as group se-
quential .



PETER C. O'BRIEN, Ph.D.
Department of Medical Statistics
andEpidemiology

MARC A. SHAMPO, Ph .D.
Section of Publications,
Division of Education

Mayo Clin Proc 56:755-756, 1981

Epilogue

In the preceding series of papers, we have described some of the most
elementary concepts and methods in statistics . We started with descriptive
statistics, discussing methods for describing a data set by use of such
descriptors as the mean and standard deviation, median, and range (and
interquartile range) . Graphic techniques for providing a quick visual
impression of the data, such as histograms and scatter diagrams, were
presented also .
We then turned our attention to inferential statistics-establishing gen-

eralizations about a population by use of a sample drawn from it . This
process was illustrated in a series of papers describing some of the more
common techniques, such as confidence intervals, t tests, and chi-square
(XZ) tests . In each situation, the basic approach is the same: first, the
questions being addressed must be identified and stated precisely . These
questions, together with the resources available to the investigator, deter-
mine the appropriate study design, which in turn dictates the method used
for data analysis . Proper interpretation of the analysis completes the
process . It is essential that an investigator who intends to rely on statistical
inference work closely with a statistician during the entire process : from
questions to study design to data analysis to interpretation .
Two complementary aspects of data analysis were presented : estimation

and hypothesis-testing . Estimation is attempting (by use of sample data) to
ascertain some characteristic of the population, such as the mean serum
urea level, or the difference between sets of paired data (such as blood-
pressure measurements made before and after treatment, case by case), or
the difference between the incidence of side effects associated with two
drugs . Because the estimates are based on sample data-which are subject
to random variation-we have shown how to assess their precision by
deriving standard errors and confidence limits . Since precision improves
with increase of sample size, a confidence interval may be viewed as a
measure of the adequacy of sample size.

For hypothesis-testing, one first transforms the question of interest into a
null hypothesis . For example, to determine whether a new treatment
modality is more effective than the established modality, one formulates a
hypothesis that there is no difference between their effects . To assess the
null hypothesis, one collects data and computes a P value . Rejection of the
null hypothesis is based on a statement such as, "If the null hypothesis (no
difference) is true of the population, then the probability that a sample of
this size will show a difference as large as the one that appears in our
sample is less than P."
When the data justify rejection of the null hypothesis (that is, when the P

value is very small), the results are termed statistically significant (not to be
confused with clinically significant, a judgment to be made by a clinician) .
When the results of hypothesis-testing do not lead to rejection of the null
hypothesis, the interpretation may be less clear. Accepting the null hy-
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pothesis may not be justified if the lack of statistical
significance may be attributed to small sample size .
Again, this question may be addressed by consideration
of confidence intervals, if available .
An important principle is that statistics can only estab-

lish an association and cannot define the cause and
effect . For example, statistics may establish an as-
sociation between having a yellow-stained index finger
and the occurrence of lung cancer . However, it is obvi-
ous that although the association is strong, "yellow
finger" does not cause cancer. In this case the observed
association between yellow finger and lung cancer is
merely an artifact resulting from the association between
smoking and lung cancer .
Some additional special topics that occur commonly in

medical research were discussed : evaluating a new di-
agnostic procedure, determining normal values, de-
scribing survivorship, and finally, using sequential meth-
ods . Although we alluded only briefly to some important
study-design considerations, it is worthwhile to keep in
mind the need for a comparison group, the desirability of
random double-blind treatment assignment, and the im-
portant distinction between observational and experi-
fnental studies .

In all the topics introduced, we only scratched the
surface ; and of necessity, some topics were omitted
entirely . However, we hope we have provided the reader
with an introduction that will encourage a further study of
statistics and prepare him for wiser judgment of what he
reads .

Bound sets of reprints of the articles in this series---STATISTICS FOR
CLINICIANS-are available at a cost of $5 . Please send check with
order, made payable to Mayo Clinic Proceedings, to Room 1044,
Plummer Building, Mayo Clinic, Rochester, MN 55905.
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